Respuesta :

SOLUTION

Given the information and graph on the question tab;

[tex]\begin{gathered} \text{y=3cos\lparen}\frac{\theta}{3}\text{\rparen----equation1} \\ \\ \end{gathered}[/tex]

Given that the general cosin function is expressed as

[tex]\begin{gathered} y=Acos(Bx+C)----\text{ equation2} \\ where \\ A=amplitude \\ period=\frac{2\pi}{B} \end{gathered}[/tex]

By comparing equations 1 and 2, we have

[tex]\begin{gathered} A=3 \\ B=\frac{1}{3} \end{gathered}[/tex]

Thus, we have

[tex]\begin{gathered} Amplitude\text{ =3} \\ Period=\frac{2\pi}{\frac{1}{3}}=2\pi\times3=6\pi \end{gathered}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico