First, find the probability for drawing a nickel and drawing a penny.
[tex]\begin{gathered} P(N)=\frac{\text{number of sampled nickel}}{\text{total number of sampled coins}} \\ P(N)=\frac{22}{24+28+22+26} \\ P(N)=\frac{22}{100} \\ \\ P(Pn)=\frac{\text{number of sampled penny}}{\text{total number of sampled co}\imaginaryI\text{ns}} \\ P(Pn)=\frac{26}{22+28+22+26} \\ P(Pn)=\frac{26}{100} \end{gathered}[/tex]
Since finding a nickel and finding a penny are mutually exclusive events, then we can say that
[tex]\begin{gathered} P(N\text{ or }Pn)=P(N\cup Pn) \\ P(N\cup Pn)=P(N)+P(Pn) \\ P(N\cup Pn)=\frac{22}{100}+\frac{26}{100} \\ P(N\cup Pn)=\frac{48}{100} \\ P(N\cup Pn)=0.48 \end{gathered}[/tex]
Therefore, the probability of finding a nickel or a penny is 0.48.