Hi, can you please help me solve this question part (e)?

Given the vector
[tex]z=-3+4i[/tex]Part A
The modulus can be found as follow
[tex]\sqrt[]{(-3)^2+4^2}=\sqrt[]{9+16}=\sqrt[]{25}=5[/tex][tex]|z|=5[/tex]Part B.
The argument of z can be found as follow
[tex]\begin{gathered} \tan \text{ }\emptyset=\frac{4}{3} \\ \emptyset=\tan ^{-1}(\frac{4}{3}) \\ \emptyset=53.130^0 \end{gathered}[/tex]Since it is in the second quadrant,
[tex]\emptyset=180^0-53.130^0=126.870^0[/tex]Part C
[tex]w=\frac{10+4i}{z}[/tex][tex]w=\frac{10+4i}{-3+4i}[/tex]we will rationalize the denominator
[tex]\begin{gathered} w=\frac{10+4i}{-3+4i}\times\frac{-3-4i}{-3-4i} \\ \\ w=\frac{10+4i}{9+16}=\frac{-30-12i-40i+16}{25}=\frac{-14-52i}{25} \\ \\ w=\frac{-14}{25}-\frac{52i}{25} \\ \end{gathered}[/tex]