Divide the rational expressions and express in simplest form. When typing your answer for the numerator and denominator be sure to type the term with the variable first.\frac{\left(9x^2+3x-20\right)}{\left(3x^2-7x+4\right)}\div \frac{\left(6x^2+4x-10\right)}{\left(x^2-2x+1\right)}The numerator is AnswerThe denominator is Answer

Divide the rational expressions and express in simplest form When typing your answer for the numerator and denominator be sure to type the term with the variabl class=

Respuesta :

Using the definition of fractions division:

[tex]\frac{a}{b}\div\frac{c}{d}=\frac{ad}{bc}[/tex]

Therefore:

[tex]\begin{gathered} \frac{9x^2+3x-20}{3x^2-7x+4}\div\frac{6x^2+4x-20}{x^2-2x+1}=\frac{(9x^2+3x-20)(x^2-2x+1)}{(3x^2-7x+4)(6x^2+4x-10)} \\ \end{gathered}[/tex]

Using distributive property:

[tex]\frac{9x^4-15x^3-17x^2+43x-20}{18x^4-30x^3-34x^2+86x-40}[/tex]

Factor:

[tex]\frac{(3x-4)(3x+5)(x-1)^2}{2(x-1)^2(3x-4)(3x+5)}[/tex]

Simplify:

[tex]\frac{1}{2}[/tex]

Answer:

The numerator is 1

The denominator is 2

ACCESS MORE
EDU ACCESS
Universidad de Mexico