Using the definition of fractions division:
[tex]\frac{a}{b}\div\frac{c}{d}=\frac{ad}{bc}[/tex]
Therefore:
[tex]\begin{gathered} \frac{9x^2+3x-20}{3x^2-7x+4}\div\frac{6x^2+4x-20}{x^2-2x+1}=\frac{(9x^2+3x-20)(x^2-2x+1)}{(3x^2-7x+4)(6x^2+4x-10)} \\ \end{gathered}[/tex]
Using distributive property:
[tex]\frac{9x^4-15x^3-17x^2+43x-20}{18x^4-30x^3-34x^2+86x-40}[/tex]
Factor:
[tex]\frac{(3x-4)(3x+5)(x-1)^2}{2(x-1)^2(3x-4)(3x+5)}[/tex]
Simplify:
[tex]\frac{1}{2}[/tex]
Answer:
The numerator is 1
The denominator is 2