Respuesta :

Given:

[tex]61,63,63,64,67,67,69,72,73,74,75,79,81,85,86,87,89,92[/tex]

To draw:

The box and whisker plot.

Explanation:

According to the given data,

The minimum of the data is 61.

The maximum of the data is 92.

Since the total number of data is n = 18 which is even.

So, the median formula is given by,

[tex]\begin{gathered} Q_2=\frac{(\frac{n}{2})^{th}term+(\frac{n}{2}+1)^{th}term}{2} \\ =\frac{(\frac{18}{2}){^{th}term+(\frac{18}{2}+1)^{th}term}}{2} \\ =\frac{9^{th}term+10^{th}term}{2} \\ =\frac{73+74}{2} \\ =\frac{147}{2} \\ Q_2=73.5 \end{gathered}[/tex]

Therefore, the median is 73.5.

Then, the lower quartile is the median of the lower half of the data.

The lower half data are,

[tex]\begin{equation*} 61,63,63,64,67,67,69,72,73 \end{equation*}[/tex]

The middle term is 67.

Therefore, the lower quartile is 67.

The upper quartile is the median of the upper half of the data.

The upper half data are,

[tex]\begin{equation*} 74,75,79,81,85,86,87,89,92 \end{equation*}[/tex]

The middle term is 85.

Therefore, the upper quartile is 85.

So, the box and whisker plot is,

Ver imagen JohnaelS285701
ACCESS MORE
EDU ACCESS
Universidad de Mexico