Step 1
Given: A flow rate of 6 fluid ounces per day
Required: To convert 6 fluid ounces per day to cubic meters per year to the nearest hundredth
Step 2
To solve this problem we use the method of dimensional analysis for consistency
Convert 6 fluid ounces to cubic meter
[tex]\begin{gathered} \frac{6\text{ }\times3.785\times1\text{cubic meter}}{8\times2\times2\times4\times1000} \\ =\frac{22.71}{128000} \\ =0.000177421875\text{ cubic meter} \end{gathered}[/tex]
Step 3
Convert 1 day to year
[tex]\begin{gathered} \frac{1year}{365\text{ days}}=\frac{\text{xyear}}{1\text{ day}} \\ xyear=\frac{1\text{ year}\times1\text{ day}}{365\text{ days}} \\ 1day\text{=0.002739726027 years} \end{gathered}[/tex]
Step 4
Get the final answer
[tex]\begin{gathered} =\frac{0.000177421875\text{ cubic meter}}{\text{0.002739726027 years}} \\ =\text{ 0.064758984 cubic meters/ year} \\ =0.06\text{cubic meters/ years}\approx\text{ to the nearest hundredth} \end{gathered}[/tex]
Answer = 0.06 cubic meters per year