Respuesta :

Answer::

[tex]\begin{gathered} x=3\text{ or 4} \\ x\neq8,x\neq-2 \end{gathered}[/tex]

Explanation:

Given the rational function:

[tex]\frac{-2}{x-8}=\frac{x-1}{x+2}[/tex]

Step 1: Cross-multiply

[tex]-2(x+2)=(x-1)(x-8)[/tex]

Step 2: Expand and simplify

[tex]\begin{gathered} -2x-4=x^2-8x-x+8 \\ -2x-4=x^2-9x+8 \\ x^2-9x+2x+8+4=0 \\ x^2-7x+12=0 \end{gathered}[/tex]

Step 3: Solve the quadratic equation for x.

[tex]\begin{gathered} x^2-7x+12=0 \\ x^2-4x-3x+12=0 \\ x(x-4)-3(x-4)=0 \\ (x-3)(x-4)=0 \\ x-3=0\text{ or }x-4=0 \\ x=3\text{ or }x=4 \end{gathered}[/tex]

Step 4: Find the excluded values

The excluded values are the values at which the function is undefined.

Set the denominators equal to zero.

[tex]\begin{gathered} x-8=0\text{ or x+2=0} \\ x=8,x=-2 \end{gathered}[/tex]

Thus the solution of the function is:

[tex]\begin{gathered} x=3\text{ or 4} \\ x\neq8,x\neq-2 \end{gathered}[/tex]

RELAXING NOICE
Relax