What is the value of x in the circle below?80°2°.120°40°80°100°120°


Let us start by sketching out the image
To solve fo x, we are going to solve for y first using the Intersecting chord theorem.
[tex]y^0=\frac{1}{2}(AB+CD)[/tex]Given that,
[tex]\begin{gathered} AB=80^0 \\ CD=120^0 \end{gathered}[/tex]Therefore,
[tex]\begin{gathered} y^0=\frac{1}{2}(80^0+120^0) \\ y^0=\frac{1}{2}(200^0)=100^0 \\ y^0=100^0 \end{gathered}[/tex]Solving for x,
[tex]x^0+y^0=180^0(sumofanglesonastraightlineis180^o)[/tex][tex]\begin{gathered} x^0+100^0=180^0 \\ x^0=180^0-100^0 \\ x^0=80^0 \end{gathered}[/tex]Hence, x° = 80°.
The correct option is option 2.