Respuesta :

A regular polygon with 7 sides is a heptagon.

To find the measure the interior angle (I):

[tex]I=\frac{180n-360}{n}[/tex]

Where n is the number of sides (7):

[tex]\begin{gathered} I=\frac{180\cdot7-360}{7} \\ I=\frac{1260-360}{7}=\frac{900}{7} \\ I=128.57\degree \end{gathered}[/tex]

And the sum of the interior angles is:

[tex]\begin{gathered} Si=n\cdot I \\ Si=7\cdot128.57 \\ Si=900\degree \end{gathered}[/tex]

The sum of the exterior angles (Se) is 360°.

And the sum of one exterior angle (E):

[tex]\begin{gathered} E=\frac{360}{n} \\ E=\frac{360}{7} \\ E=51.43\degree \end{gathered}[/tex]

In summary:

Name: Heptagon

Sum of interior: 900°

1 Interior: 128.57°

Sum of exterior: 360°

1 Exterior:​ 51.43°

ACCESS MORE
EDU ACCESS
Universidad de Mexico