In the diagram of ABC, BC is extended to D, m

Answer:
The measure of angle A is;
[tex]m\angle A=20^{\circ}[/tex]Explanation:
Given the triangle in the attached image;
[tex]m\angle ACB+m\angle ACD=180^{\circ}[/tex]sum of angles on a straight line;
[tex]\begin{gathered} m\angle ACB+m\angle ACD=180^{\circ} \\ 6y+3y=180 \\ 9y=180 \\ y=\frac{180}{9} \\ y=20 \end{gathered}[/tex]Also;
[tex]\begin{gathered} m\angle ACD=m\angle ABC+m\angle A \\ 3y=2y+m\angle A \\ m\angle A=3y-2y \\ m\angle A=y=20 \\ m\angle A=20^{\circ} \end{gathered}[/tex]Therefore, the measure of angle A is;
[tex]m\angle A=20^{\circ}[/tex]