Given
[tex]f(x)=x^2+10[/tex]To find the average rate of change of f over the interval [-2,-1].
Explanation:
It is given that,
[tex]f(x)=x^2+10[/tex]The average rate of change is given by,
[tex]Average\text{ }rate\text{ }of\text{ }change=\frac{f(b)-f(a)}{b-a}[/tex]That implies,
[tex]\begin{gathered} f(-1)=(-1)^2+10 \\ =1+10 \\ =11 \end{gathered}[/tex]Also,
[tex]\begin{gathered} f(-2)=(-2)^^2+10 \\ =4+10 \\ =14 \end{gathered}[/tex]Therefore,
[tex]\begin{gathered} Average\text{ }rate\text{ }of\text{ }change=\frac{f(-1)-f(-2)}{-1+2} \\ =\frac{11-14}{1} \\ =-3 \end{gathered}[/tex]Hence, the average rate of change is -3.