Determine the approximate value of the perimeter of the triangle

Answer:
The perimeter of the triangle is:
[tex]36\text{ units}[/tex]Explanation:
The perimeter of the triangle is the sum of the values of the three sides.
For the given triangle, we have;
[tex]P=x+12+9[/tex]Recall that we can get the value of x using the Pythagoras theorem;
[tex]\begin{gathered} x=\sqrt[]{12^2+9^2} \\ x=\sqrt[]{144+81} \\ x=\sqrt[]{225} \\ x=15 \end{gathered}[/tex]So, the perimeter P becomes;
[tex]\begin{gathered} P=15+12+9 \\ P=36\text{ units} \end{gathered}[/tex]Therefore, the perimeter of the triangle is:
[tex]36\text{ units}[/tex]