We have the next diagram
In order to have the system in equilibrium, we will analyze the torque on the pivot
[tex]\sum ^{}_{}\tau=F_1d_1-F_2d_2+F_3d_3=0[/tex]In this case
F1=0.155(9.8)
F2=0.025(9.8)
F3=0.275(9.8)
The distances
d1=50-18.5=31.5cm=0.315 m
d2=50-38.4=11.6cm=0.116 m
We substitute
[tex](0.155)(9.8)(0.315)-(0.025)(9.8)(0.116)+(0.275)(9.8)d_3=0[/tex]then we isolate the d3
[tex]d_3=\frac{0.155(0.315)+(0.025)(0.116)}{0.275}=0.188m_{}[/tex]d3=0.188m=18.8cm
From the beginning of the uniform meter stick will be 50+18.8=68.8cm
ANSWER
d3=18.8cm
From the beginning of the uniform meter is 68.8cm