Someone help I think this is probability but I don’t know

ANSWER
1. 3391680
2. 3876
EXPLANATION
1. We want to find the value of:
[tex]P^{12}_7[/tex]This is called "12 permutation 7"
Permutation function is defined as follows:
[tex]P^n_r\text{ = }\frac{n!}{(n-r)!}[/tex]Therefore, we have that:
[tex]\begin{gathered} P^{12}_7=\frac{12!}{(12\text{ - 7)}!}\text{ = }\frac{12!}{5!} \\ P^{12}_7=\frac{12\cdot11\cdot10\cdot9\cdot8\cdot7\cdot6\cdot5!}{5!} \\ P^{12}_7=\text{ 12 }\cdot11\cdot10\cdot9\cdot8\cdot7\cdot6 \\ P^{12}_7=3391680 \end{gathered}[/tex]2. We want to find:
[tex]C^{19}_{15}[/tex]This is called "19 combination 15"
Combination function is defined as:
[tex]C^n_r=\frac{n!}{(n-r)!\cdot r!_{}}[/tex]Therefore, we have that:
[tex]\begin{gathered} C^{19}_{15}\text{ = }\frac{19!}{(19-15)!\cdot15!}\text{ = }\frac{19!}{4!\cdot15!} \\ ^{}C^{19}_{15}=\frac{19\cdot18\cdot17\cdot16\cdot15!}{4\cdot3\cdot2\cdot1\cdot15!} \\ C^{19}_{15}=\frac{19\cdot18\cdot17\cdot16}{4\cdot3\cdot2\cdot1} \\ C^{19}_{15}=\text{ 3876} \end{gathered}[/tex]