We want to solve the following equation:
[tex]\frac{2}{3}\text{ + }\frac{3k}{4}\text{ = }\frac{71}{12}[/tex]that is equivalent to :
[tex]\frac{2}{3}-\frac{2}{3}\text{ + }\frac{3k}{4}\text{ = }\frac{71}{12}\text{ - }\frac{2}{3}[/tex]that is
[tex]\text{ }\frac{3k}{4}\text{ = }\frac{71}{12}\text{ - }\frac{2}{3}[/tex]now, we will solve the right part of the equation:
[tex]\text{ }\frac{3k}{4}\text{ = }\frac{71}{12}\text{ - }\frac{2x4}{3x4}\text{ = }\frac{71}{12}\text{ - }\frac{8}{12}\text{ = }\frac{71-8}{12}\text{ = }\frac{63}{12}[/tex]that is :
[tex]\text{ }\frac{3k}{4}\text{ = }\frac{63}{12}[/tex]Now, we resolve for k:
[tex]\text{ k = }\frac{63\text{ x 4}}{12\text{ x 3}}\text{ = }\frac{252}{36}\text{ = 7}[/tex]we can conclude that :
k = 7