Respuesta :

We want to solve the following equation:

[tex]\frac{2}{3}\text{ + }\frac{3k}{4}\text{ = }\frac{71}{12}[/tex]

that is equivalent to :

[tex]\frac{2}{3}-\frac{2}{3}\text{ + }\frac{3k}{4}\text{ = }\frac{71}{12}\text{ - }\frac{2}{3}[/tex]

that is

[tex]\text{ }\frac{3k}{4}\text{ = }\frac{71}{12}\text{ - }\frac{2}{3}[/tex]

now, we will solve the right part of the equation:

[tex]\text{ }\frac{3k}{4}\text{ = }\frac{71}{12}\text{ - }\frac{2x4}{3x4}\text{ = }\frac{71}{12}\text{ - }\frac{8}{12}\text{ = }\frac{71-8}{12}\text{ = }\frac{63}{12}[/tex]

that is :

[tex]\text{ }\frac{3k}{4}\text{ = }\frac{63}{12}[/tex]

Now, we resolve for k:

[tex]\text{ k = }\frac{63\text{ x 4}}{12\text{ x 3}}\text{ = }\frac{252}{36}\text{ = 7}[/tex]

we can conclude that :

k = 7

ACCESS MORE
EDU ACCESS
Universidad de Mexico