Graph the system below and write its solution.1y=x+3- 2x + y = 6Note that you can also answer "No solution" or "Infinitely many" solutions.10+6-Solution:-10

Respuesta :

EXPLANATION

The system of equations is given by the following expression:

(1) y = (1/2)x + 3

(2) -2x + y = 6

Substitute y= (1/2)x + 3

[tex]\begin{bmatrix}-2x+\frac{1}{2}x+3=6\end{bmatrix}[/tex]

Simplifying:

[tex]-2x+\frac{1}{2}x+3=6[/tex]

Adding similar elements:

[tex]-\frac{3}{2}x+3=6[/tex]

Subtracting -3 to both sides:

[tex]-\frac{3}{2}x=6-3[/tex][tex]\mathrm{Multiply\: both\: sides\: by\: }2[/tex][tex]2\mleft(-\frac{3}{2}x\mright)=3\cdot\: 2[/tex]

Simplify:

[tex]-3x=6[/tex]

Divide both sides by -3:

[tex]\frac{-3x}{-3}=\frac{6}{-3}[/tex]

Simplify:

[tex]x=-2[/tex][tex]\mathrm{For\: }y=\mleft(\frac{1}{2}\mright)x+3[/tex][tex]\mathrm{Substitute\: }x=-2[/tex][tex]y=\frac{1}{2}\mleft(-2\mright)+3[/tex]

Remove parentheses: (-a) = -a

[tex]=-\frac{1}{2}\cdot\: 2+3[/tex][tex]\frac{1}{2}\cdot\: 2[/tex]

Cancel the common factor:

[tex]=1[/tex][tex]=-1+3[/tex][tex]\mathrm{Add/Subtract\: the\: numbers\colon}\: -1+3=2[/tex]

=2

y=2

[tex]\mathrm{The\: solutions\: to\: the\: system\: of\: equations\: are\colon}[/tex][tex]y=2,\: x=-2[/tex]

Ver imagen AletaQ444140
RELAXING NOICE
Relax