EXPLANATION
The system of equations is given by the following expression:
(1) y = (1/2)x + 3
(2) -2x + y = 6
Substitute y= (1/2)x + 3
[tex]\begin{bmatrix}-2x+\frac{1}{2}x+3=6\end{bmatrix}[/tex]Simplifying:
[tex]-2x+\frac{1}{2}x+3=6[/tex]Adding similar elements:
[tex]-\frac{3}{2}x+3=6[/tex]Subtracting -3 to both sides:
[tex]-\frac{3}{2}x=6-3[/tex][tex]\mathrm{Multiply\: both\: sides\: by\: }2[/tex][tex]2\mleft(-\frac{3}{2}x\mright)=3\cdot\: 2[/tex]Simplify:
[tex]-3x=6[/tex]Divide both sides by -3:
[tex]\frac{-3x}{-3}=\frac{6}{-3}[/tex]Simplify:
[tex]x=-2[/tex][tex]\mathrm{For\: }y=\mleft(\frac{1}{2}\mright)x+3[/tex][tex]\mathrm{Substitute\: }x=-2[/tex][tex]y=\frac{1}{2}\mleft(-2\mright)+3[/tex]Remove parentheses: (-a) = -a
[tex]=-\frac{1}{2}\cdot\: 2+3[/tex][tex]\frac{1}{2}\cdot\: 2[/tex]Cancel the common factor:
[tex]=1[/tex][tex]=-1+3[/tex][tex]\mathrm{Add/Subtract\: the\: numbers\colon}\: -1+3=2[/tex]=2
y=2
[tex]\mathrm{The\: solutions\: to\: the\: system\: of\: equations\: are\colon}[/tex][tex]y=2,\: x=-2[/tex]