Hello, so for number#11 I used the vertex formula but got an incorrect answer for 'a'. I got a=-2, but I looked up the answer and its a=-1, how so?

Maximum (-1,5)
Explanation:
The vertex of an up - down facing parabola of the form
[tex]y\text{ = }ax^2+bx+c\text{ }[/tex]is
[tex]x_v\text{ = -}\frac{b}{2a}[/tex]. Quadratic form of the function
[tex]y\text{ = }-2x^2-4x+3[/tex]The parameters become
a = -2
b = -4
c = 3
[tex]\begin{gathered} x_v\text{ = -}\frac{-4}{2(-2)} \\ x_v\text{ = -}\frac{-4}{-4} \\ x_v\text{ = -1} \end{gathered}[/tex]To find y(v) simply put x(v) in the function
[tex]\begin{gathered} y_v\text{ = -2*\lparen-1\rparen}^2\text{ - 4\lparen-1\rparen +3} \\ y_v\text{ = -2 + 4 +3} \\ y_v\text{ = 5} \end{gathered}[/tex][tex]\begin{gathered} Solution: \\ (x_v,y_v)\text{ = \lparen}-1,5) \end{gathered}[/tex]NB:
If a < 0, then the vertex is a maximum value (Which is the case here since -2 < 0)
If a > 0, then the vertex is a minimum value