To find the maximum revenue, we need to derivate the R(x) function and then solve the equation for x:
[tex]R(x)=200x-0.5x^2[/tex]Derivate the function:
[tex]R^{\prime}(x)=200(1)-2(0.5)x=200-1x[/tex]Then:
[tex]200-x=0[/tex]Therefore:
[tex]x=200[/tex]Which x represents the maximum point, now, replace this value on the R(x) function to find the maximum revenue:
[tex]R(x)=200(200)-0.5(200)^2=20000[/tex]