Let's do the implicit differentiation:
[tex]\begin{gathered} \frac{d}{dx}(2y-x+xy)=\frac{d}{dx}3 \\ \frac{d}{dx}(2y)-\frac{d}{dx}x+\frac{d}{dx}(xy)=0 \\ 2\frac{dy}{dx}-1+(y+x\frac{dy}{dx})=0 \\ 2\frac{dy}{dx}+x\frac{dy}{dx}=1-y \\ (2+x)\frac{dy}{dx}=1-y \\ \frac{dy}{dx}=\frac{1-y}{2+x} \end{gathered}[/tex]Therefore, the answer is the first one.