In a 90-45-45 triangle the legs of the triangle are equal:
[tex]AC=BA=11ft[/tex]And the hypotenuse is given by:
[tex]\begin{gathered} BC=AC\sqrt[]{2} \\ so\colon \\ BC=11\sqrt[]{2} \end{gathered}[/tex]Using sine function:
[tex]\begin{gathered} \sin (\theta)=\frac{opposite}{hypotenuse} \\ so\colon \\ \sin (45)=\frac{AC}{BC} \\ \sin (45)=\frac{11}{BC} \\ solve_{\text{ }}for_{\text{ }}BC\colon \\ BC=\frac{11}{\sin (45)} \\ BC=11\sqrt[]{2} \end{gathered}[/tex]