Find the value of x;
[tex]\begin{gathered} \frac{3}{4}(6x+1)-3x=\frac{1}{4}(2x-1) \\ \text{Expand the parenthesis and you now have;} \\ \frac{3(6x+1)}{4}-3x=\frac{(2x-1)}{4} \\ \frac{3(6x+1)}{4}-\frac{(2x-1)}{4}=3x \\ \frac{18x+3}{4}-\frac{2x-1}{4}=3x \\ \frac{18x-2x+3-1}{4}=3x \\ \frac{16x+2}{4}=3x \\ \text{Cross multiply and you have;} \\ 16x+2=3x\times4 \\ 16x+2=12x \\ \text{Collect like terms} \\ 16x-12x=-2 \\ 4x=-2 \\ \text{Divide both sides by 4} \\ x=\frac{-2}{4} \\ x=-\frac{1}{2} \end{gathered}[/tex]