Since the function is a normal distribution, we can use the z-score formula shown below
[tex]Z=\frac{x-\mu}{\sigma}[/tex]In our case,
[tex]\mu=68,\sigma=23[/tex]Then, set x=92 and solve for Z
[tex]\begin{gathered} x=92 \\ \Rightarrow Z=\frac{92-68}{23}=\frac{24}{23} \\ \Rightarrow Z=\frac{24}{23}=1.04347\ldots \end{gathered}[/tex]Using a z-score table, the cumulative probability of Z=24/23 is
[tex]\Rightarrow P(X\le92)=0.8508[/tex]Finally,
[tex]\begin{gathered} \Rightarrow P(X>92)=1-P(X\le92)=1-0.8508=0.1492 \\ \Rightarrow P(X>92)=0.1492 \end{gathered}[/tex]Thus, the answer is 0.1492, which is equivalent to 14.92%; rounded to the nearest percentage, the answer is 15%