I have a trig question about the Cartesian coordinate and converting to polar coordinates Picture included

SOLUTION:
Step 1:
In this question, we are given the following:
Step 2:
The details of the solution are as follows:
From the question, we can see that the cartesian coordinate:
[tex](x\text{, y \rparen = \lparen 6, 5 \rparen}[/tex]Converting rectangular cordinates to polar co-ordinates, we have that:
[tex]\begin{gathered} \text{x = r cos }\theta \\ y\text{ = r cos }\theta \\ \text{and } \\ \theta\text{ = }\tan^{-1}\text{ \lparen}\frac{y}{x}) \\ \text{r = }\sqrt{x^2\text{+ y}^2} \end{gathered}[/tex][tex]\begin{gathered} since\text{ x = 6 and y = 5, we have that:} \\ r\text{ =}\sqrt{6^2+\text{ 5}^2}=\text{ }\sqrt{36\text{ + 25}}=\sqrt{61} \\ r\text{ =}\sqrt{61}\text{ = 7. 810 \lparen correct to 3 decimal places\rparen} \\ Hence,\text{ r = 7.810 \lparen coreect to 3 decimal places\rparen} \end{gathered}[/tex][tex]\begin{gathered} \theta\text{ = }\tan^{-1}\text{ \lparen}\frac{y}{x})\text{ =}\tan^{-1}(\frac{5}{6})\text{ = 39. 806}^0\text{ \lparen correct to 3 decimal places\rparen} \\ Hence,\text{ }\theta\text{ = 39. 806}^0(\text{ correct to 3 decimal places\rparen} \end{gathered}[/tex]CONCLUSION:
The final answers are:
[tex]\begin{gathered} r\text{ = 7.810 \lparen correct to 3 decimal places\rparen} \\ \theta\text{ = 39. 806}^0\text{ \lparen correct to 3 decimal places\rparen} \end{gathered}[/tex]