Respuesta :

Given:

[tex]\frac{\sec x\sin x}{\tan x+\cot x}=\sin^2x[/tex]

Find-: Prove the trigonometric identity.

Sol:

Use some trigonometric formula:

[tex]\begin{gathered} \sec x=\frac{1}{\cos x} \\ \\ \tan x=\frac{\sin x}{\cos x} \\ \\ \cot x=\frac{\cos x}{\sin x} \end{gathered}[/tex]

So,

[tex]\begin{gathered} \frac{\sec x\sin x}{\tan x+\cot x}=\sin^2x \\ \\ \frac{\frac{1}{\cos x}\cdot\sin x}{\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}}.................\text{ First option } \end{gathered}[/tex]

Then,

[tex]=\frac{\frac{\sin x}{\cos x}}{\frac{\sin^2x}{\sin x\cos x}+\frac{\cos^2x}{\sin x\cos}}................................(\text{ Second option\rparen}[/tex]

[tex]=\frac{\frac{\sin x}{\cos x}}{\frac{\sin^2x+\cos^2x}{\sin x\cos x}}...........................(\text{ Third option\rparen}[/tex]

Solve the identity then,

[tex]=\frac{\frac{\sin x}{\cos x}}{\frac{1}{\sin x\cos x}}..................(\text{ Fourth option\rparen}[/tex]

Here, use the formula:

[tex]\sin^2x+\cos^2x=1[/tex]

Then,

[tex]\begin{gathered} =\frac{\sin x}{\cos x}\sin x\cos x..........(\text{ Fifth option\rparen} \\ \\ =\sin^2x \end{gathered}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico