Respuesta :
Consider X to be the random variable representing the score of any man.
The mean and standard deviation are given to be 498 and 115 respectively,
[tex]\begin{gathered} \mu=498 \\ \sigma=115 \end{gathered}[/tex]The standard normal variate corresponding to any value of score, is given by the formula,
[tex]z=\frac{x-\mu}{\sigma}[/tex]For X=584.9, the z-score becomes,
[tex]\begin{gathered} z=\frac{584.9-498}{115} \\ z=\frac{86.9}{115} \\ z=0.75 \end{gathered}[/tex]Then the probability that a randomly selected man has scored at least 584.9 is calculated as,
[tex]P(X\ge584.9)=P(z\ge0.75)[/tex]Using the properties of normal distribution,
[tex]\begin{gathered} P(X\ge584.9)=P(z\ge0)-P(0\leq z\leq0.75) \\ P(X\ge584.9)=0.5-\varnothing(0.75) \end{gathered}[/tex]From the Standard Normal Distribution Table,
[tex]\varnothing(0.75)=0.2734[/tex]Substitute the value,
[tex]\begin{gathered} P(X\ge584.9)=0.5-0.2734 \\ P(X\ge584.9)=0.2266 \end{gathered}[/tex]Thus, there is a 0.2266 probability that the score of a randomly selected man is at least 584.9.
Consider a normal sample of 7 men from the college,
[tex]n=7[/tex]The z-score for the random sample is given by,
[tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt[]{n}}}[/tex]Substitute the values,
[tex]\begin{gathered} z=\frac{584.9-498}{\frac{115}{\sqrt[]{7}}} \\ z=\frac{86.9\sqrt[]{7}}{115} \\ z=2.00 \end{gathered}[/tex]So the probability that the mean of the sample is at least 584.9, is calculated as,
[tex]P(X_s\ge584.9)=P(z\ge2)[/tex]Using the properties of Normal Distribution,
[tex]\begin{gathered} P(X\ge584.9)=P(z\ge0)-P(0From the Standard Normal Distribution Table,[tex]\varnothing(2)=0.4772[/tex]Substitute the value,
[tex]\begin{gathered} P(X_s\ge584.9)=0.5-0.4772 \\ P(X_s\ge584.9)=0.0228 \end{gathered}[/tex]Thus, there is a 0.0228 probability that their mean score is at least 584..9.
Otras preguntas
