We have the following equation:
[tex]\log _,(x-5)+\log _,(x+3)=1[/tex]First, we apply the apply the following rule:
[tex]\begin{gathered} \log _ab+\log _ac=\log _ab\cdot c \\ \log _,(x-5)+\log _,(x+3)=\log _,(x-5)\cdot(x+3) \\ \log _,(x-5)\cdot(x+3)=1 \\ \end{gathered}[/tex]For any non null number, we have:
[tex]n^0=1[/tex]Therefore, we have:
[tex]\begin{gathered} (x-5)\cdot(x+3)=0 \\ x_1=5 \\ x_2=-3 \end{gathered}[/tex]