PS and PT are tangents to acircle, center O and radius10 cm, and meet at P. Thedistance PO = 26 cm.Calculate the perimeter ofthe quadrilateral PTOS.A.) 68 cmB.) 67.6 cmC.) 64 cmD.) 60 cm

Answer:
A. 68cm
Explanation:
PT and PS are tangents to circle O from point P.
Tangents to a circle from the same point are equal in length, therefore:
[tex]PT=PS[/tex]Next, the angle between the radius and tangent is 90 degrees.
Thus, triangle PTO is a right triangle with angle PTO=90 degrees.
Using Pythagoras theorem:
[tex]\begin{gathered} PO^2=PT^2+TO^2 \\ 26^2=PT^2+10^2 \\ PT^2=676-100 \\ PT^2=576 \\ PT=24\operatorname{cm} \end{gathered}[/tex]Therefore, the perimeter of PTOS:
[tex]\begin{gathered} \text{Perimeter}=PT+TO+OS+PS \\ =24+10+10+24 \\ =68\operatorname{cm} \end{gathered}[/tex]The correct choice is A.
Thus, triangle PTO is a right triangle with angle PTO=90 degrees