Respuesta :

Given, the sides of a triangle are 10, 8 and 12.8​.

Let, a=10, b=8 and c=12.8.

The semiperimeter of the triangle is,

[tex]\begin{gathered} s=\frac{a+b+c}{2} \\ s=\frac{10+8+12.8}{2} \\ s=15.4 \end{gathered}[/tex]

Using Heron's formula, the area of the triangle is,

[tex]A=\sqrt[]{s(s-a)(s-b)(s-c)}[/tex][tex]\begin{gathered} A=\sqrt{15.4(15.4-10)(15.4-8)(15.4-12.8)} \\ A=\sqrt{15.4(5.4)(7.4)(2.6)} \\ A=\sqrt[]{1599.99} \\ A=40 \end{gathered}[/tex]

Therefore, the area of triangle is 40.

ACCESS MORE
EDU ACCESS