The given expressions are
[tex]x^3\times x^3\times x^3\text{ and }x^{3\times3\times3}[/tex]Consider the first expression
[tex]x^3\times x^3\times x^3[/tex][tex]\text{Use the formula a}^n\times a^m\times a^p=a^{n+m+p},\text{ here a=x and n=3,m=3 and p=3}[/tex][tex]x^3\times x^3\times x^3=x^{3+3+3}[/tex]Adding 3,3 and 3, we get 9
[tex]x^3\times x^3\times x^3=x^9[/tex]Consider the second expression
[tex]x^{3\times3\times3}[/tex]Multiplying 3,3 and 3, we get 27
[tex]x^{3\times3\times3}=x^{27}[/tex]Equating both expressions as follows:
[tex]x^3\times x^3\times x^3=x^{3\times3\times3}[/tex]Substitute values, we get
[tex]x^9=x^{27}[/tex][tex]\text{Use the conditions if a}^n=a^mimplies^{}_{}\text{ n=m, here a=x and n=9, m=27.}[/tex][tex]9=27[/tex]It is not true.
Hence the given two expressions are not equivalent.
The reason is it doesn't satisfy the following condition
[tex]x^n\times x^m_{}=x^{n+m}[/tex]