Respuesta :

Answer:

The correct answer is option b) 81

Explanation:

The definition of log is:

[tex]\log_ab=c\Leftrightarrow a^c=b[/tex]

In this case, we are given:

[tex]y=\log_cx[/tex]

And we know that the point (x, y) = (27, 3) lies on the graph of the given function.

We can write:

[tex]3=\log_c27[/tex]

Applying the log definition:

[tex]3=\operatorname{\log}_c27\Leftrightarrow c^3=27[/tex]

Now we can solve for c:

[tex]\begin{gathered} c^3=27 \\ c=\sqrt[3]{27}=3 \end{gathered}[/tex]

Since c = 3, now we can find the value of k.

We are given:

[tex]y=c^x[/tex]

And (x, y) = (4, k) lies in the graph.

Then:

[tex]k=3^4=81[/tex]

Thus, k = 81

ACCESS MORE
EDU ACCESS
Universidad de Mexico