QUIZDecompose each of the following rational expression in to partial fraction

Answer:
Explanation
Given the expression;
[tex]\frac{x+1}{x^2+4x+3}[/tex]You are to express as partial fraction as shown;
[tex]\begin{gathered} \frac{x+1}{x^2+4x+3} \\ =\frac{x+1}{x^2+3x+x+3} \\ =\frac{x+1}{x(x+3)+1(x+3)} \\ =\frac{x+1}{(x+1)(x+3)} \end{gathered}[/tex]Split the result;
[tex]\begin{gathered} \frac{x+1}{(x+3)(x+1)}=\frac{A}{x+3}+\frac{B}{x+1} \\ \frac{x+1}{(x+3)(x+1)}=\frac{A(x+1)+B(x+3)}{x+3(x+1)} \\ x+1\text{ = A(x+1)+B(x+3)} \\ \end{gathered}[/tex]Get B by making x+1 = 0
x = -1
Subatitute x = -1 into the result;
-1+1 = A(-1+1)+B(-1+3)
0 = 0 + 2B
2B = 0
B = 0
Get A by making x+3 = 0
x = -3
Substitute x = -3 into the same result
-3+1 = A(-3+1)+B(-3+3)
-2 = -2A + 0
A = -2/-2
A = 1
Substituting A = 0 and B = 1 into the partial fraction
[tex]\frac{x+1}{(x+3)(x+1)}=\text{ }\frac{0}{x+1}+\frac{1}{x+3}[/tex]