Respuesta :

Given the function:

[tex]y=x^2-4x-5[/tex]

- Factor to find the x-intercept:

Factor and equal to zero for Vertexeach factor.

[tex]x^2-4x-5=(x-5)(x+1)[/tex]

So:

[tex]\begin{gathered} x-5=0 \\ x=5 \\ \text{and} \\ x+1=0 \\ x=-1 \end{gathered}[/tex]

a) The vertex of a parabola is:

[tex]x=-\frac{b}{2a}[/tex]

The parameters of the parabola are:

a = 1, b = -4 and c = -5

[tex]x=-\frac{-4}{2(1)}=\frac{4}{2}=2[/tex]

We find y:

[tex]y=(2)^2-4(2)-5=4-8-5=-9[/tex]

Therefore the vertex of the parabola is: (2, -9)

b) x-intercepts are: (5,0) and (-1,0)

c) Vertex: (2, -9)

d) Graph:

- Table:

x y

-1 0

0 -5

1 -8

2 -9

3 -8

4 -5

5 0

6 7

Ver imagen YovanaM80342
RELAXING NOICE
Relax