Matthew spent2/3 of his birthday money on books1/4 of his money on snacks. He spent3/7 of his birthday money which statement is most accurate?

Given:
Matthew spent 2/3 of his birthday money on books
1/4 of his money on snacks.
He spent 3/7 of his birthday money
Let x represent the amount of money Matthew has for his birthday
The amount of money Musa spent on books is:
[tex]\begin{gathered} =\text{ }\frac{2}{3}\times\text{ x} \\ =\text{ }\frac{2}{3}x \end{gathered}[/tex]The amount of money he spent on snacks:
[tex]\begin{gathered} =\text{ }\frac{1}{4}\times\text{ x} \\ =\text{ }\frac{1}{4}x \end{gathered}[/tex]The total amount of money he spent is the sum of money he spent on books and snacks:
[tex]\begin{gathered} =\text{ }\frac{2}{3}x\text{ + }\frac{1}{4}x \\ =\text{ }\frac{8x\text{ + 3x}}{12} \\ =\text{ }\frac{11}{12}x \end{gathered}[/tex]Hence, the amount of money Matthew spent is 11/12. The most accurate statement would be that 3/7 is not a reasonable answer for the fraction of his birthday money Matthew has spent. The fraction should be closer to one.
Answer: Option C