SOLUTION:
Step 1:
A bag has 14 marbles, all identical except for their color.
There are 7 red marbles, 5 blue marbles, and 2 yellow marbles.
If you draw two marbles from the bag WITHOUT replacement,
find the following probabilities:
7 red marbles , 5 blue marbles and 2 yellow marbles
Total = 7 + 5 + 2 = 14
( Without Replacement)
a.) P(RR) =
[tex]\frac{7}{14}\text{ x }\frac{6}{13}=\frac{42}{182}=\frac{3}{13}[/tex][tex]P(R\R)\text{ = }\frac{3}{13}[/tex]b.) P(RB) =
[tex]\frac{7}{14}X\text{ }\frac{5}{13}=\frac{35}{182}=\frac{5}{26}[/tex][tex]P\text{ ( RB) =}\frac{5}{26}[/tex]c.) P(RY) =
[tex]\frac{7}{14}X\frac{2}{13}=\frac{14}{182}=\frac{1}{13}[/tex][tex]P(RY)\text{ =}\frac{1}{13}[/tex]d.) P(BR) =
[tex]\frac{5}{14}X\frac{7}{13}=\frac{35}{182}=\frac{5}{26}[/tex][tex]P(BR)\text{ =}\frac{5}{26}[/tex]e.) P(BB) =
[tex]\frac{5}{14}\text{ X }\frac{4}{13}=\frac{20}{182}=\frac{10}{91}[/tex][tex]P(BB\text{ ) =}\frac{10}{91}[/tex]f.) P(BY) =
[tex]\frac{5}{14}X\text{ }\frac{2}{13}=\frac{10}{182}=\frac{5}{91}[/tex][tex]P(BY)\text{ =}\frac{5}{91}[/tex]g.) P(YR) =
[tex]\frac{2}{14}\text{ X}\frac{7}{13}=\frac{14}{182}=\frac{1}{13}[/tex][tex]P(YR)\text{ =}\frac{1}{13}[/tex]h.) P(YB) =
[tex]\frac{2}{14}\text{ X}\frac{5}{13}=\frac{10}{182}=\frac{5}{91}[/tex][tex]P(YR)\text{ = }\frac{5}{91}[/tex]l) P(YY) =
[tex]\frac{2}{14}\text{ x}\frac{1}{13}=\frac{2}{182}=\frac{1}{91}[/tex][tex]P(YY)\text{ =}\frac{1}{91}[/tex]