Which of the following shows the simplified function of sine squared x over the quantity 1 plus cosine x end quantity question mark

Answer
Explanation
Given:
[tex]\frac{sin^2x}{1+cosx}[/tex]To determine the simplified function of the above given, we first use the Pythagorean identity:
[tex]cos^2(x)+sin^2(x)=1[/tex]Hence,
[tex]sin^2x=1-cos^2x[/tex]We plug in what we know:
[tex]\begin{gathered} \frac{s\imaginaryI n^{2}x}{1+cosx}=\frac{1-cos^2x}{1+cosx} \\ Simplify\text{ and rearrange} \\ =\frac{-(cos^2x-1)}{1+cosx} \\ =\frac{-(cosx+1)(cosx-1)}{1+cosx} \\ =-(cosx-1) \\ =-cosx+1 \\ =1-cosx \end{gathered}[/tex]Therefore, the answer is:
[tex]1-cos\text{ }x[/tex]