Respuesta :

Answer

Explanation

Given:

[tex]\frac{sin^2x}{1+cosx}[/tex]

To determine the simplified function of the above given, we first use the Pythagorean identity:

[tex]cos^2(x)+sin^2(x)=1[/tex]

Hence,

[tex]sin^2x=1-cos^2x[/tex]

We plug in what we know:

[tex]\begin{gathered} \frac{s\imaginaryI n^{2}x}{1+cosx}=\frac{1-cos^2x}{1+cosx} \\ Simplify\text{ and rearrange} \\ =\frac{-(cos^2x-1)}{1+cosx} \\ =\frac{-(cosx+1)(cosx-1)}{1+cosx} \\ =-(cosx-1) \\ =-cosx+1 \\ =1-cosx \end{gathered}[/tex]

Therefore, the answer is:

[tex]1-cos\text{ }x[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico