The problem is given to be:
[tex]\csc (\tan ^{-1}(w))[/tex]Let
[tex]\begin{gathered} \theta=\tan ^{-1}w \\ \therefore \\ \tan \theta=w \end{gathered}[/tex]We can write the above to be:
[tex]\tan \theta=\frac{w}{1}[/tex]Using the above, we can draw a right-angled triangle as shown below:
To find the value of x, we can use the Pythagorean Theorem:
[tex]\begin{gathered} x^2=w^2+1^2 \\ x=\sqrt[]{w^2+1} \end{gathered}[/tex]Recall:
[tex]\csc (\tan ^{-1}(w))=\csc \theta[/tex]The identity of cosec is given to be:
[tex]\csc \theta=\frac{1}{\sin \theta}[/tex]From the triangle,
[tex]\sin \theta=\frac{w}{x}=\frac{w}{\sqrt[]{w^2+1}}[/tex]Therefore,
[tex]\csc \theta=\frac{\sqrt[]{w^2+1}}{w}[/tex]Therefore, the answer is given to be:
[tex]\csc (\tan ^{-1}(w))=\frac{\sqrt[]{w^2+1}}{w}[/tex]