Respuesta :

The problem is given to be:

[tex]\csc (\tan ^{-1}(w))[/tex]

Let

[tex]\begin{gathered} \theta=\tan ^{-1}w \\ \therefore \\ \tan \theta=w \end{gathered}[/tex]

We can write the above to be:

[tex]\tan \theta=\frac{w}{1}[/tex]

Using the above, we can draw a right-angled triangle as shown below:

To find the value of x, we can use the Pythagorean Theorem:

[tex]\begin{gathered} x^2=w^2+1^2 \\ x=\sqrt[]{w^2+1} \end{gathered}[/tex]

Recall:

[tex]\csc (\tan ^{-1}(w))=\csc \theta[/tex]

The identity of cosec is given to be:

[tex]\csc \theta=\frac{1}{\sin \theta}[/tex]

From the triangle,

[tex]\sin \theta=\frac{w}{x}=\frac{w}{\sqrt[]{w^2+1}}[/tex]

Therefore,

[tex]\csc \theta=\frac{\sqrt[]{w^2+1}}{w}[/tex]

Therefore, the answer is given to be:

[tex]\csc (\tan ^{-1}(w))=\frac{\sqrt[]{w^2+1}}{w}[/tex]

Ver imagen LenyaY648575
RELAXING NOICE
Relax