Respuesta :

[tex]\begin{gathered} a=4\sqrt[]{3} \\ b=4 \end{gathered}[/tex]

Explanation

Step 1

we have a rigth triangle, hence let

[tex]\begin{gathered} \text{angle}=\text{ 30} \\ \text{hypotenuse}=8 \\ \text{adjacent side=a} \\ \text{opposite side= b} \end{gathered}[/tex]

to find a , we need a function that relates adjacent side, angle and hypotenuse

[tex]\cos \emptyset=\frac{adjacent\text{ side}}{\text{hypotenuse}}[/tex]

replace.

[tex]\begin{gathered} \cos \emptyset=\frac{adjacent\text{ side}}{\text{hypotenuse}} \\ \cos \text{ 30=}\frac{a}{8} \\ \text{Multiply both sides by 8} \\ 8\cdot\cos \text{ 30=}\frac{a}{8}\cdot8 \\ a=8\cdot\cos \text{ 30} \\ a=8\cdot\frac{\sqrt[]{3}}{2} \\ a=4\sqrt[]{3} \end{gathered}[/tex]

Step 2

now, to find b we can use sine function

[tex]\begin{gathered} \sin \emptyset=\frac{opposite\text{ side}}{\text{hypotenuse}} \\ \end{gathered}[/tex]

replace.

[tex]\begin{gathered} \sin 30=\frac{b}{8} \\ \text{Multiply both sidese by 8} \\ 8\cdot\sin 30=\frac{b}{8}\cdot8 \\ 8\sin \text{ 30=b} \\ 4=b \end{gathered}[/tex]

I hope this helps you

ACCESS MORE
EDU ACCESS
Universidad de Mexico