Respuesta :

Answer:

[tex]\begin{gathered} CP=\sqrt{11} \\ m\operatorname{\angle}C=56.44 \end{gathered}[/tex]

Explanation:

Step 1. The information that we have is that

• PQ=5

,

• CQ=6,

and that PQ is tangent to circle C.

Since PQ is a tangent line, it forms a 90° angle with the circumference, and the triangle is a right triangle.

We need to find CP and the measure of angle C (m

Step 2. To find CP we use the Pythagorean theorem:

In this case:

[tex](CQ)^2=(CP)^2+(PQ)^2[/tex]

Substituting the known values:

[tex]6^2=(CP)^2+5^2[/tex]

Solving for CP:

[tex]\begin{gathered} 6^2-5^2=(CP)^2 \\ 36-25=(CP)^2 \\ 11=(CP)^2 \\ \sqrt{11}=CP \end{gathered}[/tex]

The value of CP is:

[tex]\boxed{CP=\sqrt{11}}[/tex]

Step 3. To find the measure of angle C, we use the trigonometric function sine:

[tex]sinC=\frac{opposite\text{ side}}{hypotenuse}[/tex]

The opposite side to angle C is 5 and the hypotenuse is 6:

[tex]sinC=\frac{5}{6}[/tex]

Solving for C:

[tex]C=sin^{-1}(\frac{5}{6})[/tex]

Solving the operations:

[tex]\begin{gathered} C=s\imaginaryI n^{-1}(0.83333) \\ C=56.44 \\ \downarrow \\ \boxed{m\operatorname{\angle}C=56.44} \end{gathered}[/tex]

Answer:

[tex]\begin{gathered} CP=\sqrt{11} \\ m\operatorname{\angle}C=56.44 \end{gathered}[/tex]

Ver imagen LouisN277345
Ver imagen LouisN277345
RELAXING NOICE
Relax