PQ is tangent to •C at P. If PQ = 5 and CQ = 6, find CP and m

Answer:
[tex]\begin{gathered} CP=\sqrt{11} \\ m\operatorname{\angle}C=56.44 \end{gathered}[/tex]Explanation:
Step 1. The information that we have is that
• PQ=5
,• CQ=6,
and that PQ is tangent to circle C.
Since PQ is a tangent line, it forms a 90° angle with the circumference, and the triangle is a right triangle.
We need to find CP and the measure of angle C (m
Step 2. To find CP we use the Pythagorean theorem:
In this case:
[tex](CQ)^2=(CP)^2+(PQ)^2[/tex]Substituting the known values:
[tex]6^2=(CP)^2+5^2[/tex]Solving for CP:
[tex]\begin{gathered} 6^2-5^2=(CP)^2 \\ 36-25=(CP)^2 \\ 11=(CP)^2 \\ \sqrt{11}=CP \end{gathered}[/tex]The value of CP is:
[tex]\boxed{CP=\sqrt{11}}[/tex]Step 3. To find the measure of angle C, we use the trigonometric function sine:
[tex]sinC=\frac{opposite\text{ side}}{hypotenuse}[/tex]The opposite side to angle C is 5 and the hypotenuse is 6:
[tex]sinC=\frac{5}{6}[/tex]Solving for C:
[tex]C=sin^{-1}(\frac{5}{6})[/tex]Solving the operations:
[tex]\begin{gathered} C=s\imaginaryI n^{-1}(0.83333) \\ C=56.44 \\ \downarrow \\ \boxed{m\operatorname{\angle}C=56.44} \end{gathered}[/tex]Answer:
[tex]\begin{gathered} CP=\sqrt{11} \\ m\operatorname{\angle}C=56.44 \end{gathered}[/tex]