You have to Determine analytically if the following function are even, odd, or neither.

Given the function
[tex]f(x)=2x^3-x[/tex]Using the graphical method,
The graph of the given function is shown below
From the graph of the function,
[tex]f(-x)=-f(x)[/tex]Hence, the given function is Odd
Alternatively
[tex]f(x)=2x^3-x[/tex]Replacing x with -x and solving
[tex]\begin{gathered} f(x)=2x^3-x \\ \text{where x =-x} \\ f(-x)=2(-x)^3-(-x) \\ f(-x)=2(-x^3)+x=-2x^3+x \\ f(-x)=-2x^3+x=-1(2x^3-x) \\ f(-x)=-1(2x^3-x) \\ R\text{ecall that }f(x)=2x^3-x \\ \text{Thus} \\ f(-x)=-f(x) \end{gathered}[/tex]It can be seen from the above deduction that
[tex]f(-x)=-f(x)[/tex]Hence, the function f(x)=2x³-x is odd