First, notice that if there are 4.2*10^7 hearbeats per year per person and there are 7,600,000,000 people in the world, then the total number of heartbeats in the world per year is equal to:
[tex](4.2\cdot10^7)(7,600,000,000)[/tex]Rewrite the number 7,600,000,000 using scientific notation. Moving the decimal point 9 places to the left:
[tex]7,600,000,000=7.6\cdot10^9[/tex]Therefore, the number of heartbeats per year can be expressed as:
[tex](4.2\cdot10^7)\cdot(7.6\cdot10^9)[/tex]Use the commutative property of multiplication to rewrite the product:
[tex]4.2\cdot7.6\cdot10^7\cdot10^9[/tex]Multiply 4.2 times 7.6:
[tex]31.92\cdot10^7\cdot10^9[/tex]Use the properties of the exponents to rewrite (10^7)(10^9):
[tex]31.92\cdot10^{7+9}=31.92\cdot10^{16}[/tex]Move the decimal point one place to the left by increasing by 1 the exponent of the power of 10:
[tex]3.192\cdot10^{17}[/tex]Comparing this number with the expression a x 10^b:
[tex]\begin{gathered} a=3.192 \\ b=17 \end{gathered}[/tex]Therefore, there is a total of 3.192 x 10^17 human heartbeats per year.