Since, the cost C in dollars is a linear function of the length L in feet, we can write:
[tex]C=mL+b[/tex]Where
m is the slope
b is the y-intercept of the line graphed.
The points are in the from (L, C) which is (length, cost). Given:
(80, 20) and (200, 100)
The slope (m) is:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]Let the points be:
[tex]\begin{gathered} (x_1,y_1)=(80,20) \\ (x_2,y_2)=(200,100) \end{gathered}[/tex]So slope is:
[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{100-20_{}}{200-80_{}} \\ m=\frac{80}{120} \\ m=\frac{2}{3} \end{gathered}[/tex]The equation becomes:
[tex]C=\frac{2}{3}L+b[/tex]Let's take the point (L, C) = (80, 20) and find out b:
[tex]\begin{gathered} C=\frac{2}{3}L+b \\ 20=\frac{2}{3}(80)+b \\ 20=\frac{160}{3}+b \\ b=20-\frac{160}{3} \\ b=\frac{60-160}{3} \\ b=\frac{-100}{3} \end{gathered}[/tex]The formula for the function is:
[tex]C=\frac{2}{3}L-\frac{100}{3}[/tex]The cost of installing 210 feet of pipe:
We plug in L = 210 into formula and find C:
[tex]\begin{gathered} C=\frac{2}{3}(210)-\frac{100}{3} \\ C=140-\frac{100}{3} \\ C=\frac{420-100}{3} \\ C=\frac{320}{3} \\ C=\$106.67 \end{gathered}[/tex]