Respuesta :

Given the Letter E, you can divide it into these figures:

Notice that you can divide it into 3 equal rectangles and 1 large rectangle.

• The area of a rectangle can be calculated using this formula:

[tex]A=lw[/tex]

Where "l" is the length and "w" is the width of the rectangle.

In this case, you can identify that:

[tex]\begin{gathered} l_2=l_3=l_4=4\text{ }units \\ \\ w_2=w_3=w_4=3\text{ }units \end{gathered}[/tex]

Therefore, the total area of the equal rectangles is:

[tex]A_{(2,3,4)}=3(4\text{ }units)(3\text{ }units)=36\text{ }units^2[/tex]

Since:

[tex]\begin{gathered} l_1=18\text{ }units \\ w_1=3units_{} \end{gathered}[/tex]

You get that the area of rectangle 1 is:

[tex]A_1=(18\text{ }units)(3\text{ }units)=54\text{ }units^2[/tex]

Therefore, the total area of letter E is:

[tex]A_T=54\text{ }units^2+36\text{ }units^2=90\text{ }units^2[/tex]

• In order to find the perimeter of the letter E, you need to identify the length of each side. See the picture below:

Therefore, adding the lengths, you get that the perimeter is:

[tex]P=18\text{ }units+7\text{ }units+3\text{ }units+4\text{ }units+5\text{ }units+4\text{ }units+3\text{ }units+4\text{ }units+4\text{ }units+4\text{ }units+3units+7\text{ }units[/tex][tex]P=66\text{ }units[/tex]

Hence, the answer is:

[tex]\begin{gathered} A_T=90\text{ }units^2 \\ \\ P=66\text{ }units \end{gathered}[/tex]

Ver imagen CarstenM780494
Ver imagen CarstenM780494
RELAXING NOICE
Relax