Respuesta :

Given:-

[tex]a=(1,4,-2),b=(3,-1,-10)[/tex]

To find:-

The area of the paralleogram.

So now we simplify,

[tex]a\times b=\begin{bmatrix}{i} & {j} & {k} \\ {1} & {4} & {-2} \\ {3} & {-1} & {-10}\end{bmatrix}[/tex]

By furthur simplifying. we get,

[tex]\begin{gathered} \begin{bmatrix}{i} & {j} & {k} \\ {1} & {4} & {-2} \\ {3} & {-1} & {-10}\end{bmatrix}=i(-40-2)-j(-10+6)+k(-1-12) \\ \text{ =-42i+4j-13k} \end{gathered}[/tex]

So now,

[tex]\begin{gathered} \lvert a\times b\rvert=\sqrt[]{(-42)^2+4^2+(-13)^2} \\ \text{ =}\sqrt[]{1764+16+169} \\ \text{ =}\sqrt[]{1949} \\ \text{ =44.14} \end{gathered}[/tex]

So the area of paralogrgram is 44.14

RELAXING NOICE
Relax