We are asked to determine a set of parametric equations for the parabolic motion of an object. The parametric equations for such a motion is given by:
[tex]\begin{gathered} x=v\cdot\cos 43\degree t,(1) \\ y=-16t^2+v\cdot\sin 43\degree t+6,(2) \end{gathered}[/tex]To determine the velocity we will solve for "t" in equation (1):
[tex]t=\frac{x}{v\cos 43}[/tex]Now, we will replace this in equation (2):
[tex]y=-16(\frac{x}{v\cos43})^2+v\cdot\sin 43\degree(\frac{x}{v\cos43})+6[/tex]Simplifying:
[tex]y=-\frac{16x^2}{v^2\cos^243}+x\tan 43+6[/tex]Now we replace the values x = 54.5 and y = 0:
[tex]0=-\frac{16(54.5)^2}{v^2\cos^243}+(54.5)\tan 43+6[/tex]Simplifying:
[tex]0=-\frac{88850.1}{v^2}+56.82[/tex]Now we solve for "v":
[tex]\frac{88850.1}{v^2}=56.82[/tex][tex]88850.1=56.82v^2[/tex][tex]\frac{88850.1}{56.82}=v^2[/tex]Solving the operation:
[tex]1563.71=v^2[/tex]taking the square root:
[tex]\begin{gathered} \sqrt[]{1563.71}=v \\ 39.54=v \end{gathered}[/tex]Therefore, the velocity is 39.54 ft/s.