To solve the exponential equation, we apply natural logarithm from both sides of it:
[tex]\begin{gathered} 4^{1-9x}=5^x \\ \ln (4^{1-9x})=\ln (5^x) \end{gathered}[/tex]
Now, we apply the power rule of the logarithms:
[tex]\log _b(M^p)=p\cdot\log _b(M)\Rightarrow\text{ Power rule}[/tex][tex]\begin{gathered} \ln (4^{1-9x})=\ln (5^x) \\ (1-9x)\ln (4^{})=x\ln (5^{}) \end{gathered}[/tex]
Now, we apply the distributive property on the left side of the equation:
[tex]\begin{gathered} 1\cdot\ln (4)-9x\cdot\ln (4^{})=x\ln (5^{}) \\ \ln (4)-9x\ln (4^{})=x\ln (5^{}) \end{gathered}[/tex]
Now, we subtract xln(5) from both sides of the equation:
[tex]\begin{gathered} \ln (4)-9x\ln (4^{})-x\ln (5)=x\ln (5^{})-x\ln (5) \\ \ln (4)-9x\ln (4^{})-x\ln (5)=0 \end{gathered}[/tex]
Now, we subtract ln(4) from both sides:
[tex]\begin{gathered} \ln (4)-9x\ln (4^{})-x\ln (5)-\ln (4)=0-\ln (4) \\ -9x\ln (4^{})-x\ln (5)=-\ln (4) \end{gathered}[/tex]
Now, we factor x on the left side:
[tex]\begin{gathered} x(-9\ln (4^{})-\ln (5))=-\ln (4) \\ \text{ Divide by }-9\ln (4)^{}-\ln (5)\text{ from both sides} \\ \frac{x(-9\ln(4^{})-\ln(5))}{(-9\ln(4^{})-\ln(5))}=\frac{-\ln(4)}{(-9\ln(4^{})-\ln(5))} \\ x=\frac{-\ln(4)}{(-9\ln(4^{})-\ln(5))} \\ x=\frac{-\ln(4)}{-(9\ln(4^{})+\ln(5))} \\ x=\frac{\ln(4)}{9\ln(4^{})+\ln(5)} \end{gathered}[/tex]
Thus, the exact solution is:
[tex]$\boldsymbol{x=\frac{\ln(4)}{9\ln(4^{})+\ln(5)}}$[/tex]
And the solution rounded to three decimal places is:
[tex]$\boldsymbol{x=0.098}$[/tex]