Respuesta :

We have the equation:

[tex]y=a\cdot b^x[/tex]

We know two points and we will use them to calculate the parameters a and b.

The point (0,3) will let us know a, as b^0=1.

[tex]\begin{gathered} y=a\cdot b^x \\ 3=a\cdot b^0=a \\ a=3 \end{gathered}[/tex]

Now, we use the point (2, 108/25) to calcualte b:

[tex]\begin{gathered} y=3\cdot b^x \\ \frac{108}{25}=3\cdot b^2 \\ 3\cdot b^2=\frac{108}{25} \\ b^2=\frac{108}{25\cdot3}=\frac{108}{3}\cdot\frac{1}{25}=\frac{36}{25} \\ b=\sqrt[]{\frac{36}{25}} \\ b=\frac{\sqrt[]{36}}{\sqrt[]{25}} \\ b=\frac{6}{5} \end{gathered}[/tex]

Then, we can write the equation as:

[tex]y=3\cdot(\frac{6}{5})^x[/tex]

RELAXING NOICE
Relax