Respuesta :

[tex]\frac{-x^2+2x-5}{x^3-x^2}[/tex]

Rewrite the expression as:

[tex]\frac{-x^2+2x-5}{x^2(x-1)}[/tex]

The partial fraction expansion is of the form:

[tex]\frac{-x^2+2x-5}{x^2(x-1)}=\frac{A}{x-1}+\frac{B}{x}+\frac{C}{x^2}[/tex]

Multiply both sides by x²(x - 1):

[tex]\begin{gathered} -x^2+2x-5=Ax^2+(x-1)(Bx+C) \\ -x^2+2x-5=-C+(A+B)x^2+(C-B)x \end{gathered}[/tex]

Equate the coefficients on both sides:

[tex]\begin{gathered} -5=-C_{\text{ }}(1)_{} \\ 2=C-B_{\text{ }}(2) \\ -1=A+B_{\text{ }}(3) \end{gathered}[/tex]

So, from (1):

[tex]C=5[/tex]

Replace C into (2):

[tex]\begin{gathered} 2=5-B \\ B=3 \end{gathered}[/tex]

Replace B into (3):

[tex]\begin{gathered} -1=A+3 \\ A=-4 \end{gathered}[/tex]

Therefore, the answer is:

[tex]\frac{-x^2+2x-5}{x^2(x-1)}=\frac{-4}{x-1}+\frac{3}{x}+\frac{5}{x^2}[/tex]

ACCESS MORE
EDU ACCESS