We are given the following information
Foci at (0, -4) and (10, -4)
The conjugate axis is 6 units
Recall that the standard form of the equation of hyperbola centered at (h, k) is given by
[tex]\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1[/tex]Where the center is (h, k)
The center (h, k) is the midpoint of the transverse axis given by
[tex]\begin{gathered} (h,k)=(\frac{0+10}{2},\frac{-4+(-4)}{2}) \\ (h,k)=(\frac{0+10}{2},\frac{-4-4}{2}) \\ (h,k)=(\frac{10}{2},\frac{-8}{2}) \\ (h,k)=(5,-4) \end{gathered}[/tex]Let us find the values of a and b
The semi transverse axis (a) is given by
[tex]a=\frac{10-0}{2}=\frac{10}{2}=5[/tex]The semi conjugate axis (b) is given by
[tex]b=\frac{6}{2}=3[/tex]So, the equation of the hyperbola is
[tex]\begin{gathered} \frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1 \\ \frac{(x-5)^2}{5^2}-\frac{(y-(-4))^2}{3^2}=1 \\ \frac{(x-5)^2}{25^{}}-\frac{(y+4)^2}{9^{}}=1 \end{gathered}[/tex]Therefore, the equation of the hyperbola is
[tex]\frac{(x-5)^2}{25^{}}-\frac{(y+4)^2}{9^{}}=1[/tex]