Respuesta :

Given that the mass of the jet is m = 20000 kg.

The tangential velocity of the jet is

[tex]\begin{gathered} v=\frac{1500\operatorname{km}}{hr} \\ =\frac{1500\times1000}{60\times60} \\ =416.67\text{ m/s} \end{gathered}[/tex]

The centripetal acceleration is

[tex]a=\text{ 5 g}[/tex]

This centripetal acceleration can be converted into m/s by using acceleration due to gravity, g = 9.8 m/s which is as follows

[tex]\begin{gathered} a=\frac{5}{9.8} \\ =0.51\text{ m/s} \end{gathered}[/tex]

We have to find the radius, r.

It can be calculated as

[tex]\begin{gathered} a=\frac{mv^2}{r} \\ r=\frac{mv^2}{a} \end{gathered}[/tex]

Substituting the values, the radius will be

[tex]\begin{gathered} r=\frac{20000\times(416.67)^2}{0.51} \\ =6.8083\times10^9\text{ m} \\ =6.8083\times10^6\text{ km} \end{gathered}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico