Answer:
(a)3,003 ways.
(b)360,360 ways.
Explanation:
• The number of colors = 15
,• The number of colors to be chosen = 5
(a)If the order of choices is not relevant we use the combination formula:
[tex]C_{n,x}=\frac{n!}{x!(n-x)!}[/tex]In this problem: n=15, x=5
[tex]\begin{gathered} C_{15,5}=\frac{15!}{5!(15-5)!} \\ =\frac{15!}{5!\times10!} \\ =3003 \end{gathered}[/tex]This can be done in 3,003 ways.
(b)If the order of choices is relevant we use the permutation formula:
[tex]P_{n,x}=\frac{n!}{(n-x)!}[/tex]In this problem: n=15, x=5
[tex]\begin{gathered} P_{15.5}_{}=\frac{15!}{(15-5)!} \\ =\frac{15!}{10!} \\ =360,360 \end{gathered}[/tex]This can be done in 360,360 ways.